
Caspar: Extracting and Synthesizing User Stories of Problems
from App Reviews

Hui Guo
hguo5@ncsu.edu

North Carolina State University
Raleigh, North Carolina

Munindar P. Singh
mpsingh@ncsu.edu

North Carolina State University
Raleigh, North Carolina

ABSTRACT

A user’s review of an app often describes the user’s interactions
with the app. These interactions, which we interpret as mini stories,
are prominent in reviews with negative ratings. In general, a story
in an app review would contain at least two types of events: user
actions and associated app behaviors. Being able to identify such
stories would enable an app’s developer in better maintaining and
improving the app’s functionality and enhancing user experience.

We present Caspar, a method for extracting and synthesizing
user-reported mini stories regarding app problems from reviews.
By extending and applying natural language processing techniques,
Caspar extracts ordered events from app reviews, classifies them as
user actions or app problems, and synthesizes action-problem pairs.
Our evaluation shows that Caspar is effective in finding action-
problem pairs from reviews. First, Caspar classifies the events with
an accuracy of 82.0% on manually labeled data. Second, relative to
human evaluators, Caspar extracts event pairs with 92.9% precision
and 34.2% recall. In addition, we train an inference model on the
extracted action-problem pairs that automatically predicts possible
app problems for different use cases. Preliminary evaluation shows
that our method yields promising results. Caspar illustrates the
potential for deeper understanding of app reviews and possibly
other natural language artifacts arising in software engineering.
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1 INTRODUCTION

Application distribution platforms, such as Apple App Store and
Google Play Store, provide critical pathways for users to provide
their feedback to app developers in the form of ratings and reviews
[28]. Developers must pay close attention to such post-deployment
user feedback because it contains important information such as
feature requests and bug reports [16, 27]. Not surprisingly, given the
explosive increase in the number of reviews and the demands for
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developer productivity, user reviews have attracted much research
interest of late [4, 8, 17, 20, 30].

However, current approaches focus on arguably the more su-
perficial aspects of reviews, such as their topics and the reviewer’s
sentiment for an app or a feature. Some of these studies target the
classification and collection of whole reviews that describe app
problems. The end game of such endeavors is for the developers
to read and understand the collected full reviews to identify useful
insights, which is time-consuming and error-prone.

In contrast, we observe that reviews often carry deeper knowl-
edge than traditionally mined. Such knowledge would be valuable
if it were extracted and synthesized. Specifically, we have found
that a user’s review of an app often tells a mini story about how the
user interacted or attempted to interact with the app. This story
describes what function the user tried to bring about and how the
app behaved in response.

Definitions. We define a user story as a sequence of ordered
events that a user reports regarding his or her interaction with an
app. An event in a story is a part of a sentence that describes a
single action. We use the term event phrase to talk about an event
as it is represented in language. Investigating stories present in app
reviews has major implications for software engineering. These
stories not only serve as de facto deployment reports for an app,
but also express users’ expectations regarding the app.

In our study, we consider an app problem story as a sequence
of ordered events that happen in a use case where the app violates
the user’s (and possibly the developer’s) expectations. A story of
interest in this study includes at least two types of events: user
actions and app problems.

An app problem is an undesirable behavior that violates a user’s
expectations. In particular, when a review gives a negative rating,
the stories within it contain rich information regarding app prob-
lems. These app problems when reported on (and sometimes ranted
about) by users call for a developer’s immediate attention. Negative
reviews tend to act as discussion points and, if left unaddressed,
can be destructive to user attraction and retention [28].

A user action event describes what action the user took when
interacting with the app, often indicative of user expectations. User
actions in app problem stories depict the scenarios where app prob-
lems occur. Example 1 shows one-star review for The Weather
Channel app1 from Apple App Store (in this and other examples,
all underlining is added by us for clearer illustration).

The review in Example 1 contains a pair of ordered events: (1)
a user action, trying to scroll through cities, and (2) the app’s prob-
lematic behavior in response, app hesitating.

1https://apps.apple.com/us/app/weather-the-weather-channel/id295646461
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Example 1
★✩✩✩✩ username1, 05/29/2014
Somebody messed up!

Horrible. What on earth were these people thinking. I’m going
to look for another weather app. It hesitates when I try to scroll
thru cities. I’m so irritated with this fact alone that I’m not going
to waste my time explaining the other issues.

We define an action-problem pair as such a pair of events in
which an app problem (an event) follows or is triggered by a user
action (an event). Such event pairs are mini stories that describe
where and how the app encounters a problem. Therefore, these pairs
can yield specific suggestions to developers as to what scenarios
they need to address. Combining user actions with app problems
makes the problems easier to understand. For example, consider
the following reviews for the FitBit app2 from Apple’s App Store:

Example 2
★✩✩✩✩ username2, 07/14/2014
App crashing

App keeps crashing when I go and log my food. Not all the time
but at least a crashing session a day.

★✩✩✩✩ username3, 09/12/2014
App full of bugs

The app crashes, freezes, and miscalculates calories constantly.
The only reason I still own a fitbit is the website.

Both reviews report the problem of app constantly crashing. How-
ever, the first review, which includes the user action, i.e., logging
food, is more informative than the latter.

Many users describe their actions when they report problems in
app reviews. We found from a manual annotation of 200 one-star
reviews (see Section 4 for more details) that 84 reviews (42.0%)
mentioned an app problem, of which 38 (45.2%) described the as-
sociated user actions. Of course, some app problems may occur
without users’ actions. Although such reviews may mention seri-
ous problems that need a developer’s attention, they do not provide
insightful information for a developer to address those problems.

Event extraction and synthesis. Extracting and synthesizing action-
problem pairs from app reviews is a challenging task. First, ex-
tracting the targeted events, i.e., user actions and app problems, is
nontrivial—because user-provided text is not well structured and
are often riddled with typos and grammatical errors. Second, users
may not describe the events of their interaction with apps in a
sequential order. Determining the temporal or causal links between
events can be difficult.

We present Caspar, a method for extracting and synthesizing
stories of app problems, as action-problem event pairs, from app
reviews. Caspar addresses the following main research question:

RQextract How effectively can we extract and synthesize app prob-
lem stories as action-problem pairs from app reviews?

2https://apps.apple.com/us/app/fitbit/id462638897

Manually reading negative reviews to identify reports of app
problems is time-consuming. Automatic extraction and synthesis of
such reports can save time for analysts of app reviews. To answer
RQextract, we investigate the performance of Caspar in (1) classify-
ing events as User Actions or App Problems, and (2) identifying
action-problem pairs compared to human annotators.

To the best of our knowledge, Caspar is the first work on app
reviews that focuses on the user-app interaction stories that are
told in app reviews.

Event inference. We consider a possible enhancement of the ex-
traction of user actions and app problems from text: automatically
learn the relation between user actions and app problems and infer
relevant app problems corresponding to a user action from this link.
This type of linking and inference may potentially help developers
preemptively handle possible problems in different use cases, es-
pecially where user actions are known, but problems have not yet
been reported. Further, developers and analysts will not need to
limit their analysis to extracting information from a limited set of
reviews for one target app, but instead can leverage reviews for all
apps with similar functionalities. Doing so would be particularly
helpful for the less popular apps that might each garner only a few
reviews regarding app problems. Therefore, we ask the following
research question:

RQ
infer

How effectively can an event inference model infer app
problems in response to a user action?

Caspar includes a preliminary investigation onRQ
infer

. We eval-
uate the effectiveness of Caspar’s tentative solution in (1) linking
user actions and app problems, as well as (2) inferring relevant app
problems that may happen after a user action.

Contribution. We introduce and provide the first solution to the
research problem of identifying and analyzing user-reported stories.
Caspar adopts natural language processing (NLP) and deep learning,
and brings the investigation of app reviews down to the event level.
Instead of generating a selective set of full reviews, Caspar yields
high-quality pairs of user action and app problem events. Moreover,
by linking app problems and user actions, Caspar can infer possible
problems that correspond to a use case. A crucial meta-requirement
in app development is to avoid such problems.

Our reusable contributions include: (1) a method for extracting
and synthesizing stories describing app problems, as action-problem
event pairs, from app reviews, (2) a resulting dataset of collected
event pairs, and (3) a tentative solution and preliminary results for
the event inference task. By presenting Caspar, we emphasize the
importance of analyzing user-reported stories regarding the usage
of a specific app.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 describes the related studies on the analysis of app reviews
and event inference. Section 3 introduces the targeted data and our
method in Caspar. Section 4 demonstrates the results of our method.
Section 5 concludes with a discussion of the merits and limitations
of Caspar, and directions for future work.

https://apps.apple.com/us/app/fitbit/id462638897
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2 RELATEDWORK

Analyzing informative reviews and prioritizing feedback have been
shown to be positively linked to app success [29]. Recent work on
analyzing app reviews mostly involves generic NLP techniques. In
particular, it does not address the tasks of extracting and analyzing
stories in app reviews and applying event inference on those stories.
We now introduce the related work in (1) app review analysis and
(2) event inference and story understanding.

2.1 Information Extraction from App Reviews

App reviews include valuable information for developers. Pagano
and Maalej [28] report on empirical studies of app reviews in the
Apple Store. They identify 17 topics in user feedback in app stores by
manually investigating the content of selected user reviews. Pagano
and Maalej also find that a significant fraction of the reviews—
specifically, 96.4% of reviews with one-star ratings—include the
topics of shortcoming or bug report, which could be mined for
requirements-related information.

Previous studies on information extraction from app reviews em-
phasize the classification of reviews as a way of combing through
a large amount of text and reducing the effort required for analysis.
Maalej and Nabil [20] classify app reviews according to whether
or not they include bug information, requests for new features, or
simply praise for an app. Based on Maalej and Nabil’s classification
method, Dhinakaran et al. [7] investigate active learning to reduce
manual effort in annotation. Panichella et al. [30] classify user re-
views based on a taxonomy relevant to software maintenance and
evolution. The base categories in their taxonomy include Infor-
mation Giving, Information Seeking, Feature Request, and Problem
Discovery. The Problem Discovery type of app reviews describe
app issues or unexpected behaviors. By applying this classification,
Panichella et al. focus on understanding the intentions of the au-
thors of reviews. Chen et al. [4] employ unsupervised techniques
for identifying and grouping informative reviews. Their framework
helps developers by prioritizing and presenting the most infor-
mative app reviews. Guzman et al. [9] investigate user feedback
on Twitter to identify and classify software-related tweets. They
leverage Decision Trees and Support Vector Machines (SVMs) to
automatically identify relevant tweets that describe bugs, short-
comings, and such.

With the amount of available app reviews increasing, reading
through entire reviews become impractical. To reduce the time
required by developers, recent research targets certain topics, and
investigates user reviews on the sentence level. Iacob and Harrison
[14] retrieve sentences that contain feature requests from app re-
views by applying carefully designed rules, such as keyword search
and sentence structures. They specify these rules based on an inves-
tigation of the ways users express feature requests through reviews.
Di Sorbo et al. [8] summarize app reviews by grouping sentences
based on topics and intention categories. Developers can learn fea-
ture requests and bug reports more quickly when presented with
the summaries. Kurtanović and Maalej [17] classify reviews and
sentences based on user rationale. They identify concepts such as
issues and justifications in their theory of user rationale. Using
classification techniques, Kurtanović and Maalej synthesize and
filter rationale-backed reviews for developers or other stakeholders.

2.2 Event Inference and Story Understanding

We recognize that app reviews contain user-app interaction stories
related to user experience. A story, in the sense of natural language
processing, is a sequence of events. Research on the topics of event
inference and story understanding involves understanding the rela-
tions between events as well the structure of events in a sequence.
These two topics have gained prominence in information extraction
because they can be applied to many tasks, including question an-
swering, storytelling, and document summarization. Previous work
on these topics targets sources of well-edited text, such as news
articles, books, movie scripts, and blogs. Caspar is an approach for
event inference and story understanding on app reviews, which are
generally casually produced.

Event inference involves understanding relations between events.
The extraction of temporal relations between events has garnered
much attention. Mani et al. [21] apply rules and axioms, such as
the existence of marker words like before and after, to infer tem-
poral relations between events. Mirroshandel and Ghassem-Sani
[24] extract temporal relations of events from news articles with
carefully engineered features. They adopt basic features of events
such as tense, polarity, and modality, as well as extra event-event
features, such as the existence of prepositional phrases. Ning et al.
[26] propose facilitating the extraction of temporal relations with
a knowledge base of such relations collected from other available
large sources of text such as news articles. They claim that extrac-
tion of temporal relations can be more effective if the extraction
systems understand how events usually happen.

Many studies have endeavored to extract causal relations based
on events’ temporal orders. Beamer and Girju [1] propose the con-
cept of causal potential as a measure of the strength of the causal
relation between a pair of events. Two events tend to be causally
related more strongly if they occur more frequently in one order
than the reverse order. Hu and Walker [13] extract temporal re-
lations of actions from action-rich movie scripts, and infer their
causality. Based on similar ideas, Hu et al. [12] extract and infer
fine-grained event pairs that are causally related from blogs and
film descriptions. Zellers et al. [40] provide SWAG, a dataset of
multiple choice questions composed by event pairs extracted from
video captions. The SWAG task is, given the first event, to select the
second event from four choices based on commonsense inference.
Studies of event relation extraction on text with lower quality, such
as tweets and online reviews, are lacking. In Caspar, we focus on
event pairs describing app-user interactions, where a user action
may trigger, but not necessarily be the cause of, an app problem.

Story understanding investigates longer sequences of events.
One important task in story understanding is to infer an event that
has been held out from the story [3]. The Story Cloze Test [25] is
a popular event inference task based on a high-quality collection
of five-sentence stories extracted from personal weblogs about
everyday life. Specifically, it calls for an inference model that infers
the last event (the ending) based on four preceding events.

Deep learning is a popular family of techniques in event infer-
ence and story understanding. Long Short-Term Memory (LSTM)
[11] networks are a type of recurrent neural networks that yield
superior performance on sequences of data, such as text. Srinivasan
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et al. [36] target the Story Cloze Test using a straightforward bidi-
rectional LSTM model to determine whether an event is random
or the correct ending of a story. We learn from their insights when
building and training the event inference model in Caspar. BERT
[6] is a pretrained language representation model that can be fine-
tuned to achieve state-of-the-art performances in numerous NLP
tasks, including the event inference in SWAG. We borrow insights
from BERT when adopting pairs of sentences as input.

3 METHOD

Caspar consists of three steps. First, Caspar extracts events from
targeted app reviews and order them based on heuristics as well as
more sophisticated natural language processing (NLP) techniques
(part of RQextract). Second, Caspar synthesizes action-problem
pairs by classifying the events and keeping the ordered pairs of
user action and app problem events (part of RQextract). Third,
Caspar trains an inference model on the extracted event pairs, and
infers app problem events given the user actions (RQ

infer
). Figure 1

shows an overview of Caspar.

App
Reviews

Event Extraction
(and Ordering)

Ordered
Events

Action-Problem
Pairs

Action-Problem
Pair Synthesis

Train Classifier
for Synthesis

Train Problem
Inference Model

Query:
User Action

Problem
Inference

App
Problems

Extraction

Synthesis

Inference

Figure 1: An overview of Caspar.

For event extraction, Caspar takes a corpus of targeted app re-
views, and produces a list of ordered events for each review. For
synthesis of event pairs, Caspar requires a dataset of events labeled
with event types to train its event classifier.

3.1 Dataset: Targeted App Reviews

In the present study, we collected 5,867,198 reviews, including text
and star ratings, received by 151 apps from the period of 2008-07-10
to 2017-09-15, by crawling the app reviews pages on Apple App
Store.3 Table 1 lists the counts of reviews with different ratings.

3https://apps.apple.com/us/genre/ios/id36

Table 1: Number of reviews grouped by ratings.

Rating Count

★✩✩✩✩ 1,220,003
★★✩✩✩ 374,940
★★★✩✩ 443,475
★★★★✩ 826,070
★★★★★ 3,002,710

An app problem indicates a deviation from the reviewer’s expec-
tations. Therefore, problems are prevalent in reviews with negative
ratings. Most reviews with bug reports (and without praise) are
associated with one-star ratings [28]. In this study, we focus only
on app reviews with the most negative ratings, i.e., one-star ratings.

We focus on action-problem event pairs, each of which comprises
(1) an expected user action and (2) an app problem that indicates
a deviation from expected app functionality. The app problem is
related to the user action in that the former happens after or is
triggered by the latter. Although an app review tells a story, i.e., a
sequence of events, not all pairs of events are necessarily related,
temporally or causally.

To make sure that extracted events are temporally ordered and
casually related, we keep only the reviews that contain common
temporal conjunctions, including before, after, and when. In addi-
tion, we consider key phrases that indicate temporal ordering, such
as as soon as, every time, and then. Instead of processing all available
app reviews, which are a large dataset, we adopt key phrase search
as a heuristic and keep only the reviews that match at least one key
phrase. We borrow this insight from previous studies, which have
shown that such temporal markers are effective in the identification
of sentence-internal temporal relations [18, 19].

Therefore, we conduct our experiments on a refined dataset of
negative reviews that contain at least one key phrase. The total
number of targeted reviews is 393,755. Table 2 lists the key phrases
and the count of reviews that contain each of them. Note that some
reviews contain multiple key phrases. We targeted this list of key
phrases because they are the most prominent temporal phrases in
our dataset. We excluded words that are likely to be used in other
senses than their temporal meanings, such as since and as, which
frequently act as causal conjunctions.

3.2 Extracting Events

This step extracts ordered events from these targeted reviews using
NLP techniques. We refer to an event in the text as a phrase that is
rooted in a verb and includes other attributes related to the verb. An
event phrase is different from a verb phrase in that it is usually the
longest phrase related to a target verb that does not include words
related to other target verbs. Caspar’s extraction step employs the
following NLP techniques.

Part-of-speech (POS) tagging. Part-of-speech (POS) tagging [35]
is a process that marks a word in a sentence with a tag correspond-
ing to its part of speech, based on its context and properties. POS
tagging is commonly provided in NLP libraries. We leverage POS
tagging to identify verbs in a sentence, as each event phrase must

https://apps.apple.com/us/genre/ios/id36
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Table 2: Counts of one-star reviews with key phrases.

Key phrase Occurrences

after 77,360
as soon as 7,603
before 55,630
every time 53,341
then 81,338
until 42,823
when 152,568
whenever 8,563
while 25,237

Targeted Reviews 393,755

It hesitates when I try to scroll thru cities

nsubj

ROOT

advmod

advcl

aux

xcomp pobj

prepnsubj

Figure 2: Dependency parse tree for the example sentence.

contain a verb. Common POS tags for verbs include VB for the base
form, VBD for past tense, and VBG for gerund or present participle.

Dependency parsing. Dependency parsing [5] is the process of
analyzing the grammatical structure of a sentence. For each word
in the sentence, a dependency parser identifies its head word and
how it modifies the head, i.e., the dependency relation between the
given word and its head. The dependency relations identified in a
sentence define a dependency-based parse tree of the sentence.

Event extraction from a sentence. To identify an event phrase
rooted in a certain verb, we find the subtree rooted on this verb in
the dependency-based parse tree. Note that a sentence may include
multiple verbs, and some of the verbs may belong to the same
event. Beginning from a dependency parse, we consider only verbs
that are parsed as ROOT, advcl (adverbial clause modifier), or conj
(conjunct). We choose these dependency relations because they
are good indicators of events. A verb parsed as advcl is typically
the root verb of an adverb clause that starts with one of the key
phrases, which describes a separate event from the main clause.
A conj verb is often the root of an event phrase in a list of events.
Since the dependency tree rooted in ROOT covers all the words in a
sentence, we extract theROOT event phrase fromwords that are not
incorporated in any other event phrases. We remove punctuation
marks at both ends of an event phrase.

Figure 2 shows the dependency parse tree of the underlined
sentence in Example 1. We consider two verbs, hesitates (ROOT)
and try (advcl). In this parse tree, all words are in the subtree rooted
on hesitates, whereas the phrase when I try to scroll thru cities is in
the subtree rooted on try. Therefore, two events are extracted from
this sentence: it hesitates and I try to scroll thru cities.

Event extraction from a review. We take the following steps to
extract ordered events from each review.

(1) Find and keep key sentences, i.e., sentences that contain the
key phrases, and collect the sentences surrounding them
(one preceding sentence and one following sentence), if any.

(2) Extract event phrases from each key sentence and its sur-
rounding sentences.

(3) Order event phrases in each key sentence using heuristics.
(4) Collect other event phrases in the original order in which

they appear in the text.
The heuristics we adopt to order the events are shown in Table 3,

where e1 → e2 indicates that e1 happens before e2.

Table 3: Heuristics for events in a complex sentence.

Sentence Structure Event Order

e1, before / until / then e2 e1 → e2

e1, after / whenever / every
time / as soon as e2

e2 → e1

e1, when e2 e1 → e2, if verb of e1 is VBG
e2 → e1, otherwise

In the case of “e1, when e2,” e1 happens first most of the time.
However, consider the key sentence in Example 3 (for SnapChat4).

Example 3
★✩✩✩✩ username4, 09/16/2014
Virus

I love Snapchat. Use it often. But snapchat gave my phone a
virus. So I was using snapchat today when all of a sudden my
phone screen turned blue and then my phone shut off for 7
HOURS. 7 HOURS. So I had to delete snapchat because it was
messing up my iPhone 5c.

We add the heuristic that, in “e1,when e2” where e1 is continuous,
i.e., the verb in e1 is marked as VBG by the POS tagger, e1 occurs
before e2.

Note that the key phrases are not included within any event
phrase. Instead, we label the events based on their positions relative
to the key phrases. For example, if an event appears in an adverbial
clause that starts with when it is labeled a subclause event, and
the event outside of this subclause is labeled main. Events that
do not appear in a key sentence are labeled surrounding. We keep
these labels as context information to make the events easier to
understand.

There is one key sentence (the underlined sentence) in Example 1
(Section 1). Thus, we keep three sentences and extracts four events
from them. We order the events extracted from the key sentence
based on the heuristic for when. Table 4 shows the ordered list of
extracted events.

4https://apps.apple.com/us/app/snapchat/id447188370

https://apps.apple.com/us/app/snapchat/id447188370
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Table 4: Events extracted from Example 1.

ID Label Event phrase

e1 Surrounding I ’m going to look for another weather app
e2 Subclause (when) I try to scroll thru cities
e3 Main It hesitates
e4 Surrounding I ’m so irritated with this fact alone . . .

3.3 Synthesizing Event Pairs

This step classifies the extracted events into User Actions, App
Problems, or Neither, and synthesizes action-problem pairs.

We define User Actions as what the users are supposed to do
to correctly use the app, typically from an anticipated use case. We
define App Problems as the unexpected and undesirable behaviors
of an app in response to the user actions (including the lack of a
correct response) that are not not intended by the app developers.
In negative reviews, users sometimes complain about the designed
app behaviors, which we do not classify as problems. Accordingly,
we disregard the types of event phrases shown in Table 5, without
checking the context (the reviews from which they are extracted).
Event phrases that fall into these categories are labeled Neither.

Table 5: Types of event phrases we classify as Neither.

Event phrase type Example

1. Incorrectly extracted verb
phrases

(See Section 5.3)

2. Users’ affections or personal
opinions toward the app

“it hasmade the app bad” “MS
OneDrive is superior”

3. App behaviors that are de-
signed by the developers

“I guess you only get 3 of the
24 levels free”

4. Users’ observations of the de-
velopers

“you guys changed the news
feed”

5. Users’ requests of features “needs the ability to enter un-
limited destinations”

6. Users’ imperative requests for
bug fixes

“fix the app please”

7. Users’ behaviors that are not
related to the app

“I give you one-star”
“I contacted customer service”

8. Events that are ambiguous
without context or too general

“it was optional”
“I try to use this app”

Manual labeling. To create a training set for the classification, we
conducted three rounds of manual labeling with three annotators
(pseudonyms A, B, C) who are familiar with text analysis and app
reviews. The three annotators were asked to label each event as a
User Action, an App Problem, or Neither, as described above.

For each round, we randomly selected extracted events from the
results in the previous step. In the first two rounds, each annotator
labeled all events in a subset, followed by the annotators resolving
their disagreements through discussion.

In the third round, each event was labeled by two annotators,
and any disagreements were resolved by labeling the events as

Neither. We consider this resolution acceptable, as the Neither
events are not considered in the event inference task.

Table 6 shows the pairwise Cohen’s kappa for each round of
manual labeling between each pair of annotators (A & B, A & C,
and B & C for Rounds 1 and 2; mixed for Round 3, since each event
received two labels, from A & B, B & C, or A & C) before any
resolution of differences.

Table 6: Pairwise Cohen’s kappa for manual labeling.

Round Count Cohen’s kappa
A & B A & C B & C Mixed

1 100 0.630 0.502 0.603
2 100 0.607 0.542 0.572
3 1,200 0.614

Considering there are three classes (so agreement by chance
would occur with a probability of 0.333), the results show that the
annotators had moderate to good agreement over the labels before
their discussions. After excluding some events that were identified
by the annotators as having parsing errors or being too short, we
produce a dataset that contains 1,386 labeled events. Table 7 shows
the distribution of this dataset.

Table 7: Distribution of the manually labeled dataset.

Event type Count

User Action 401
App Problem 383
Neither 602

Total 1,386

Event encoding. Before performing the classification, we need to
convert the event phrases into vectors of real numbers. One basic
encoding method is TF-IDF (term frequency-inverse document
frequency) [34], which we adopt as a baseline. TF-IDF has been
widely adopted in information retrieval and text mining.

However, TF-IDF results in sparse vectors of high dimensionality
and loses information from the phrase since it ignores the order in
which the words appear. To obtain results with higher accuracy, we
adopt the Universal Sentence Encoder (USE) [2] to convert event
phrases into dense vectors. USE is a transformer-based sentence
embedding model that leverages the encoding subgraph of the
transformer architecture [38]. USE vectors capture rich semantic
information. The pretrained USE model and its variants have be-
come popular among researchers for downstream tasks, such as text
classification and clustering [39], and can achieve state-of-the-art
performance for these tasks.

Classification. We adopt Support VectorMachines (SVMs) [33] to
classify the sentence vectors into the aforementioned three classes.
We instantiate two classifiers (with probability estimates) for User
Actions and App Problems, respectively, since SVM can be applied
only on binary classification.
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For a given event, e , the first SVM yields a probability, u, of e
being a User Action, and the second SVM yields a probability, a,
of e being an App Problem. We adopt the following formulae to
convert these probability estimates into a three-class probability
distribution. Each tuple below is of the form: PNeither, PAction,
and PProblem, which represent the probability estimates of event e
being Neither, a User Action, or an App Problem, respectively.

The purpose of this exercise is to convert two probability esti-
mates into a three-class probability distribution via a continuous
transformation while preserving the results of the original classi-
fiers. An event is classified into the class with the highest probability
after this transformation.

If u ≥ 0.5 and a ≥ 0.5,

P(e) = (
2(1 − u)(1 − a)

2 − u − a + 2ua
,

u

2 − u − a + 2ua
,

a

2 − u − a + 2ua
)

If u ≥ 0.5 and a < 0.5,

P(e) = (
1 − u

1 + a
,

u

1 + a
,

a

1 + a
)

If u < 0.5 and a ≥ 0.5,

P(e) = (
1 − a

1 + u
,

u

1 + u
,

a

1 + u
)

If u < 0.5 and a < 0.5,

P(e) = (
0.5

0.5 + u + a
,

u

0.5 + u + a
,

a

0.5 + u + a
)

In our experiments, we adopted the USE implementation in Ten-
sorFlow Hub5 to encode each event phrase into a vector. Each USE
vector is of size 512. For TF-IDF, the minimal document frequency
(DF) adopted was 30, resulting in vectors of size 1,460. We adopted
the SVM implementation in scikit-learn,6 which provides an esti-
mate of the probability of a classification.

Synthesis. Upon obtaining sequences of ordered events, each of
which has been classified as a User Action or an App Problem, we
can extract action-problem pairs by selecting user actions as well
as the app problems that immediately follow them. In such a pair,
we can assume the user action triggers the app problem, since they
happen sequentially in a story.

Manual verification. To evaluate the effectiveness of Caspar in
extracting and synthesizing action-problem pairs, we compare the
performance of Caspar against human annotators. We randomly se-
lected 200 negative (one-star) app reviews, and asked four graduate
students majoring in Computer Science to independently identify
action-problem pairs in these reviews. Each review was examined
by two annotators. The annotators achieved moderate agreement.
The Cohen’s kappa for the annotations was 0.484. An author of this
paper acted as a tiebreaker to resolve the disagreements.

For evaluation of Caspar, we address RQextract by reporting the
accuracy arising from 10-fold cross validation for event classifi-
cation, as well as the precision and recall of Caspar against the
manual results (with disagreements resolved).

5https://tfhub.dev/google/universal-sentence-encoder-large/3
6https://scikit-learn.org/stable/
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Figure 3: A bidirectional LSTM network for sequence classi-

fication.

3.4 Inferring Events

This step infers possible app problems, i.e., unexpected app behav-
iors, based on an expected user action. The purpose of this event
inference task on the action-problem pairs is to further investigate
the relation between user actions and app problems. Such inference
can potentially help developers anticipate and address possible
issues to ensure app quality.

Relation between events. We can learn the relation between user
actions and app problems from the collected action-problem pairs.
We propose learning this relation through a classification task.
Given a pair of ordered event, ⟨eu , ea⟩, where eu is a User Action
and ea is an App Problem, the classifier determines whether ea is a
valid follow-up event to eu or a random event. Thus, the classes for
each entry are Ordered Event Pair and Random Event Pair. We
define this type of classification as event follow-up classification.

We first convert a pair of events into a vector representation, and
then apply existing classification techniques on these vectors. In
addition to encoding an event into a vector using sentence encoding
techniques, we convert an event phrase into a list of word vectors.
Converting words into dense vectors require a word embedding
technique.Word embedding is the collective name for models that
map words or phrases to dense vectors of real numbers that rep-
resent semantic meanings. Popular word embedding techniques
include Word2Vec [23] and GloVe [31].

We experiment with the following classification models.
Baseline. We adopt SVM for this classification. As a baseline, we
first convert each event into a vector using TF-IDF, and then
concatenate the vectors of the two events in an event pair, and
train an SVM classifier on the concatenated vectors.

USE+SVM. We convert each event into a vector using USE, and
then concatenate the USE vectors of the two events in an event
pair. We then train an SVM classifier on the concatenated vectors.

Bi-LSTM network. We apply three substeps. One, concatenate
the tokens in the two events, separated by a special token, [SEP].
Two, convert the concatenated tokens into a sequence of word
vectors. Three, train a bidirectional LSTM network for the classi-
fication of the sequences of vectors. The structure of this network
is shown in Figure 3.
In our experiments, we adopted one of spaCy’s pretrained sta-

tistical models for English, en_core_web_lg,7 with GloVe vectors
7https://spacy.io/models/en

https://tfhub.dev/google/universal-sentence-encoder-large/3
https://scikit-learn.org/stable/
https://spacy.io/models/en
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[31] trained on Common Crawl8 data, to convert each token into
a vector. Each GloVe vector is of size 300. We implemented the
bidirectional LSTM network using TensorFlow.9 The number of
hidden layers is 256. An Adam Optimizer [15] with a learning rate
of 10−4 is used to minimize the sigmoid cross-entropy between the
output and the target. We trained the model for 20 epochs with a
batch size of one.

Negative sampling. To train the classifiers for event follow-up
classification, we conduct negative sampling to create training sets.
Negative sampling, i.e., using random examples as negative evi-
dence, is a well-accepted NLP technique for scenarios where only
positive examples are available. The concept of negative sampling
was first defined by Mikolov et al. [23] for training word vectors.
In general, each positive example of the context in which a word
appears is explicit in a corpus. However, a negative example, i.e.,
a context in which a word does not appear, is implicit. Negative
sampling solves this problem by considering a random context as
negative evidence. Negative sampling is widely used now. For ex-
ample, BERT [6] adopts negative sampling for the Next Sentence
Prediction task, where a random second sentence is considered as
negative evidence, i.e., not the “next sentence” of the given sentence.

To create a dataset for training and testing a classifier, we first
divide the extracted action-problem pairs into a training set (90%)
and a testing set (10%). Then, for each user action event, we add
two event pairs to the dataset: a positive example and a negative
example. We keep the extracted action-problem pair as a positive
example (an Ordered Event Pair), since the included app problem
event is the actual follow-up event. Following negative sampling, we
generate a negative example (a Random Event Pair) by combining
the user action and a random app problem event.

The app reviews setting poses an interesting challenge for nega-
tive sampling: multiple reviewers may have identified duplicate or
similar app problem events. For example, the events app crashed and
app freezes are common occurrences. An extracted action-problem
pair includes a user action and its actual follow-up app problem
event, but a randomly chosen app problem event is likely to be
semantically similar to the latter, which can impair the accuracy
of the classification. We solve this problem by choosing dissimilar
events when composing our negative examples. Specifically, we
introduce the following strategies for negative sampling in addition
to the naive, random selection.
Clustering. We cluster all app problem events into two groups
based on cosine similarity of their USE vectors using k-means
(implemented in scikit-learn). For each positive example, i.e., an
extracted action-problem pair, we find the cluster to which the
problem event belongs, and randomly choose a problem event
from the other cluster when generating the negative example.

Similarity threshold. When choosing a random app problem
event, we shuffle all available app problem events (using the
random.shuffle() function in Python) and iterate over them. We
select the first app problem event whose similarity with the ac-
tual follow-up event (based on cosine similarity of the respective
USE vectors) is below a preset threshold. We experiment with
thresholds of 0.50 and 0.25.

8http://commoncrawl.org/
9https://www.tensorflow.org/

Thus, we experimented with four negative sampling strategies:
Completely Random, Clustering, Similarity < 0.5, and Similarity
< 0.25, resulting in four datasets. To understand the differences
between these strategies, consider the examples of Table 10. Note
that this is purely for illustration: in our experiments, we consider
all available problem events for negative sampling. Table 10 shows
a user action event, its actual follow-up event, and four random
problem events (including their clusters and cosine similarity to
the actual follow-up event).

Table 8: An action-problem pair and four random problems.

ID Event phrase Cluster ID Cos. Sim.

a I play videos in FB – –

p I have no sound 0 1.000

p1 There is no sound 0 0.874
p2 I get kicked off 0 0.426
p3 I ’m unable to play 1 0.548
p4 My password does n’t work 1 0.215

Regardless of the strategy, the event pair ⟨a,p⟩ is kept as a posi-
tive example, since p is the actual follow-up event to a. To generate
a negative example, the Completely Random strategy chooses any
one of ⟨a,p1⟩, ⟨a,p2⟩, ⟨a,p3⟩, and ⟨a,p4⟩. The Clustering strategy
chooses only from ⟨a,p3⟩ and ⟨a,p4⟩ (the other cluster). The Simi-
larity < 0.5 strategy chooses ⟨a,p2⟩ or ⟨a,p4⟩, and the Similarity
< 0.25 strategy may choose only ⟨a,p4⟩ as a negative example.

Inferring app problems. The trained classification models esti-
mate the probability of an app problem following or being caused
by a user action, and therefore can be leveraged for inferring possi-
ble follow-up app problems based on a user action.

For a given user action, eu , we rank all possible app problems, eia ,
by the model’s confidences of the pair ⟨eu , eia⟩ being an Ordered
Event Pair. The top-ranked app problems are treated as the results
of event inference.

As we mentioned above, many app problems are similar to each
other, for which a classifier should yield similar probabilities. To
diversify the inferred events, we choose a similarity threshold, and
enforce that the cosine similarity between any two inferred events
is below this threshold.

In a preliminary investigation of RQ
infer

, we manually verified
the relevance of the top-10 app problem events for a user action by
the trained bidirectional LSTM network (Similarity < 0.25 as the
negative sampling strategy). We considered only app problems ex-
tracted from reviews of the same app to generate inferred problems.
We chose a similarity threshold of 0.75 to diversify the inferred
events. We asked three graduate students majoring in Computer
Science to independently label each of events based on whether it
is possible that it follows or is triggered by the user action.

To answer RQ
infer

, we report the ratio of the relevant app prob-
lems in the top-ranked inferred events, based on the manual verifi-
cation results.

http://commoncrawl.org/
https://www.tensorflow.org/
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4 RESULTS

We now present the results of our experiments. As mentioned in
Section 3, all experiments were conducted on the 393,755 one-star
reviews that contain key phrases.

4.1 Event Extraction and Classification

As described in Section 3.3, we trained two SVM classifiers, and
combined their results for a three-class classification. Table 9 shows
the accuracy of each classification.

Table 9: Accuracy of event classification.

Classification TF-IDF
+ SVM

USE +
SVM

User Actions vs. Others 81.2% 86.9%
App Problems vs. Others 80.2% 86.4%
User Actions vs. App Problems vs. Neither 71.2% 82.0%

We then applied the better performing of the two trained classi-
fiers (USE+SVMs) to the entire dataset of extracted events. Table 10
shows the results for the events extracted from Example 1.

Table 10: Event classification for events in Example 1.

ID Event phrase P1(e) P2(e) Prediction

e1 I ’m going to look for an-
other weather app

0.212 0.057 Neither

e2 I try to scroll thru cities 0.939 0.022 User Action

e3 It hesitates 0.034 0.705 App Problem

e4 I ’m so irritated with this
fact that I ’m not going . . .

0.036 0.080 Neither

Event pairs. Each adjacent and subsequently ordered action-
problem event pair is then synthesized as a possible result. For
example, ⟨e2, e3⟩ in Table 10 is synthesized accordingly. The total
number of resulting event pairs is 85,099.

Table 11 shows additional examples (with some paraphrasing to
save space) for the same app.

Table 11: Extracted event pairs for the Weather Channel.

User Action App problem

(after) I upgraded to iPhone 6 → this app doesn’t work
(as soon as) I open app → takes me automatically to an ad

You need to uninstall app → (before) location services stops
(every time) I try to pull up

weather
→ I get “no data”

(whenever) I press play→ it always is blotchy
(when) I have full bars → Always shows up not available

I updated my app → (then) it deleted itself

Manual verification. We compared the performance of Caspar
against human annotators. Table 12 shows two confusion matrices
based on whether an event pair has been identified, one for all
reviews and one for reviews with key phrases. Of the randomly
selected 200 one-star app reviews, only 63 contain one or more key
phrases that we have adopted.

Table 12: Manual verification of Caspar’s extraction results.

All reviews Reviews w/ key

Human Human
ID-ed Not ID-ed ID-ed Not ID-ed

Caspar ID-ed 13/200 1/200 13/63 1/63
Not ID-ed 25/200 161/200 16/63 33/63

Caspar identified 14 action-problem pairs from these 200 reviews,
whereas the annotators identified 38. When we consider the labels
produced by the annotators as the ground truth, we find that Caspar
has an overall accuracy of 87.0% (174/200), a precision of 92.9%
(13/14), and recall of 34.2% (13/38).

The human annotators identified app problem events from 84 re-
views, of which 38 contained the related user action events. Of these
38 reviews that contain action-problem pairs, 29 (76.3%) contain at
least one key phrase. We discuss these results in Section 5.

4.2 Event Inference

We investigated the performance of the proposed classifiers on
classifying the follow-up event of an event, and conducted a pre-
liminary experiment with the inference of app problems based on
a user action.

Event follow-up classification. As mentioned in Section 3.4, we
created four datasets based on four negative sampling strategies.
Since we extracted 85,099 action-problem pairs in the previous step,
each dataset included 153,178 data points for training and 17,020
for testing. Table 13 shows the accuracy of each method for event
follow-up classification on each of these four datasets.

Table 13: Accuracy of classification of event pairs.

Classifier Negative Sampling Strategy Accuracy

Baseline Completely Random 55.3%
USE+SVM Completely Random 66.0%
Bidirectional-LSTM Completely Random 67.2%

Baseline Clustering 58.5%
USE+SVM Clustering 67.8%
Bidirectional-LSTM Clustering 67.8%

Baseline Similarity < 0.5 60.7%
USE+SVM Similarity < 0.5 68.1%
Bidirectional-LSTM Similarity < 0.5 69.1%

Baseline Similarity < 0.25 72.9%
USE+SVM Similarity < 0.25 82.8%
Bidirectional-LSTM Similarity < 0.25 79.6%
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User Action: I try to scroll thru cities
Ground truth: it hesitates
Inferred App Problems:

Relevant

a1 it says there is an error
a2 it loads for what seems like forever
a3 it tells me the info for my area is not available
a4 the app crashes
a8 it reset my home location

Conflicting judgments

a6 it rarely retrieves the latest weather without
me having to refresh

a9 it goes to a login screen that does not work
Irrelevant

a5 the radar never moves , it just disappears
a7 I rely heavily on it & for the past month , it

says temporarily unavailable
a10 Radar map is buggy – weather activity stalls ,

appears , then disappears

Figure 4: Inferred app problem events to follow a user action

(threshold = 0.75), grouped by manual verification results.

Inferring app problems. Figure 4 shows the top-10 app problem
events for the user action I try to scroll thru cities. The inferred
event it loads for what seems like forever presents the most simi-
lar meaning to the ground truth (it hesitates, i.e., app pausing or
not responding). In the manual verification, all three annotators
labeled a1, a2, a3, a4, and a8 as relevant (50%), and a5, a7, and a10
as irrelevant (30%). They disagreed over the other two events.

4.3 Curated Dataset

Our entire dataset comprises 393,755 one-star reviews, 1,308,188
extracted events (along with their predicted types), 1,500 events
used for manual labeling (1,386 with manually labeled types), and
85,099 collected action-problem pairs. This dataset, along with our
source code, is available for download.10

The public release of this dataset was approved by the Institu-
tional Review Board (IRB) at NC State University.

5 CONCLUSIONS AND DISCUSSION

We presented Caspar, a method for extracting and synthesizing app
problem stories from app reviews. Caspar identifies two types of
events, user actions and app problems, as well as how the specific
events in a story relate.

Caspar adopts heuristics and classification and effectively ex-
tracts ordered event pairs. By extracting and synthesizing such app
problem instances, Caspar helps developers by presenting readable
reports of app issues that require their attention. Caspar extracts
high-quality action-problem pairs with high precision. In addition,
Caspar trains an inference model with the extracted event pairs,
leveraging NLP techniques and deep learning models, and infers

10hguo5.github.io/Caspar

possible follow-up app problems based on user actions. Such in-
ference enables developers to preemptively address possible app
issues, which would help them improve the quality of their apps.

5.1 Merits

Caspar demonstrates the following merits. Previous studies of app
reviews have focused on text analysis of app reviews on the review
level. Their results are collections of somewhat verbose reviews
that require further manual investigation by developers, which
becomes impractical as the number of available reviews increases.
Caspar dives deeper into a review, down to the event level, and can
extract and synthesize succinct action-problem pairs.

App problem event pairs. By extracting and synthesizing action-
problem pairs from app reviews, Caspar identifies app problems that
require developers’ attention. Each extracted event pair describes
an app’s unexpected behavior as well as the context (the user’s
action) in which that behavior is seen. Knowing such action pairs
can potentially help developers save time and effort to improve their
apps by addressing the identified problems. Caspar can be applied
selectively, such as to reviews for certain apps over a specified
period of time, so that the extracted event pairs are more valuable
to a particular audience of developers. By answering RQextract, we
have shown that Caspar extracts targeted event pairs effectively,
and the classification of event types yields high accuracy.

Event inference. RQ
infer

seeks to establish a connection between
user actions and app problems. Our preliminary solution learns
the relations between the two types of events in the training set.
Our experiments have shown that Caspar yields satisfactory per-
formance when determining whether an app problem is random or
a valid follow-up event of a user action.

With the help of this classification, Caspar generates relevant
follow-up app problems to user actions. Inferring relevant app prob-
lems based on a user action has the potential of helping developers
avoid problems or failures of user experience.

Caspar does not limit the event types to user actions and app
problems. A possible future direction is to investigate its effective-
ness in other types of inference, such as inferring user actions
based on an app problem to better understand the scenarios where
a certain problem is likely to occur.

5.2 Threats to Validity

The first threat to validity is that our annotators may lack the exper-
tise in the software development of iOS apps. Our annotators are
familiar with or experts on concepts of NLP and machine learning,
but they may not possess enough experience in app development
in industry, which may have affected their judgments about the
events and what labels to assign.

Second, all of our labeling and trainingwas conducted on reviews
with one-star ratings from Apple’s App Store. Our work may not
generalize to reviews where the descriptions of app behaviors are
not limited to app problems.

Third, the manually labeled training set for event classification
includes randomly selected events for the 151 apps that we targeted,
which might not be general. For app reviews in different genres,
the accuracy of the event type classification may vary.

hguo5.github.io/Caspar
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5.3 Limitations and Future Work

We identify the following limitations of Caspar. Each limitation
leads to ideas for future work to mitigate that limitation.

Key phrases. We target only those app reviews that contain se-
lected key phrases that indicate the temporal ordering of events.
Using key phrase search limits the size of the resulting dataset: only
85,099 action-problem pairs were extracted from a total of 1,220,003
one-star reviews. We use these key phrases because we need the
extracted events to be temporally and causally related.

Further investigation on how to extract related events is required.
First, we can incorporate phrases, such as the less prominent tempo-
ral phrases ever since and any time, that indicate additional relations
between events. Also, it would be worth experimenting with key
phrases that indicate conditional or causal relations, such as if
and because. Additional key phrases may be found in a semisuper-
vised fashion. Second, extraction techniques without reliance on
key phrases may be fruitful. Such techniques include leveraging
discourse relations and sentiment analysis [41] or relying on higher-
level features such as structural and semantic correspondence with
respect to various attributes such as authorship or the function and
importance of a mobile app [42]. Third, event inference models
that automatically learn relations between events can potentially
facilitate the extraction of targeted event pairs.

Text quality. The quality of app reviews varies widely. In addi-
tion to the possibility of being less informative or disorganized
[10, 20, 28], app reviews, as a type of user-generated text, are sub-
ject to low text quality indicated by slang, typos, missing punctua-
tion, or grammatical errors [22, 32]. Caspar extracts events using a
part-of-speech tagger and a dependency parser, which may work
imperfectly on such text. During the manual verification, human
annotators identified event pairs that Caspar is not able to parse.
For example, one review says App is now crashing everyone I tap a
story, where the typo causes Caspar to miss the event pairs in it.
Caspar identifies this sentence as one event, which is classified as
Neither, since the sentence is missing a conjunction. However,
human annotators can easily identify two events in this sentence.

We posit that the low quality of user-generated text is the most
potent reason for the low recall of Caspar in extracting event pairs.
Thus, an important future direction is to investigate extraction
methods that do not rely on the correctness of the parser employed.

Manual labeling. Caspar requires a dataset of events labeled with
event types, and manual labeling can be time-consuming. Further,
it seemed difficult for the annotators to achieve high agreement.
We gave the Neither label to data points on which the annotators
disagreed, which might have affected the number of extracted event
pairs, but not the correctness of them.

We identify the following reasons for the disagreement among
annotators. First, incorrectly extracted event phrases may cause
the annotators to disagree. Second, there are difficult and undis-
cussed cases where annotators may disagree. For example, the
event switching between apps doesn’t make anything faster can be
interpreted as an app problem or an irrelevant event.

Third, events have been stripped out of context—some of them
may lose critical information. For example, the event reset my phone

is usually a user action, but the annotators could not be sure without
context. Example 4 shows the entire review (for Messenger11).

Example 4
★✩✩✩✩ username5, 01/22/2016
Great but......

This is a great app. But it has been crashing before it can load.
Reset my phone, got the new update for iOS and it just keeps
crashing. Not sure if I’m the only one with this problem.

Action-problem pairs. Caspar targets only those event pairs that
describe single iterations of a user-app interaction. However, this
type of interaction does not cover all scenarios of app problems.
Futurework includes the investigation of longer sequences of events
in user-app interaction than just a pair. For example, the review in
Example 4 describes multiple user actions, none of which seems
to have caused the observed problem. However, this review does
report a bug that requires the developers’ attention. In addition to
action-problem pairs, many app reviews describe user expectations,
user reactions to app problems, or misuses of apps. We leave the
extraction of other forms of user-app interaction to future work.

Event inference. The proposed classification of event pairs yields
moderate results. One major reason is that quite a few app problems
occur multiple times. Our negative sampling strategies improved
the classification results. Future work includes more sophisticated
negative sampling strategies.

A second possible reason for the moderate performance is that
the training set is fairly small, especially for a deep learning model.
We collected 85,099 event pairs for 151 different apps, which may
not be large enough to train a bidirectional LSTM network. A pos-
sible direction is to apply Caspar on app reviews from other app
distribution platforms to extract and synthesize more event pairs.
Future work includes the improvement of recall for the extraction.

Third, we simplified event inference to event follow-up classifi-
cation, which limits the inference to app problem events that have
been reported. To fully infer follow-up events of user actions, we
may need to build more sophisticated inference models, such as
sequence to sequence models [37]. We leave the investigation such
models to future work.

In sum, this paper is a demonstration of the knowledge we could
potentially mine from natural language artifacts such as reviews,
which knowledge is not fully taken advantage of in software en-
gineering. The area of natural language processing has advanced
beyond simple text classification and topic modeling, with the aid
of deep learning techniques. The prospects are great for further in-
vestigation of natural language techniques customized to software
engineering settings.
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